skip to main content


Search for: All records

Creators/Authors contains: "Akitaya, Hugo A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. He, Meng ; Sheehy, Don (Ed.)
    We introduce basic, but heretofore generally unexplored, problems in computational origami that are similar in style to classic problems from discrete and computational geometry. We consider the problems of folding each corner of a polygon P to a point p and folding each edge of a polygon P onto a line segment L that connects two boundary points of P and compute the number of edges of the polygon containing p or L limited by crease lines and boundary edges. 
    more » « less
  2. null (Ed.)
    Motivated by applications in gerrymandering detection, we study a reconfiguration problem on connected partitions of a connected graph G. A partition of V(G) is connected if every part induces a connected subgraph. In many applications, it is desirable to obtain parts of roughly the same size, possibly with some slack s. A Balanced Connected k-Partition with slack s, denoted (k, s)-BCP, is a partition of V(G) into k nonempty subsets, of sizes n1,…,nk with |ni−n/k|≤s , each of which induces a connected subgraph (when s=0 , the k parts are perfectly balanced, and we call it k-BCP for short). A recombination is an operation that takes a (k, s)-BCP of a graph G and produces another by merging two adjacent subgraphs and repartitioning them. Given two k-BCPs, A and B, of G and a slack s≥0 , we wish to determine whether there exists a sequence of recombinations that transform A into B via (k, s)-BCPs. We obtain four results related to this problem: (1) When s is unbounded, the transformation is always possible using at most 6(k−1) recombinations. (2) If G is Hamiltonian, the transformation is possible using O(kn) recombinations for any s≥n/k , and (3) we provide negative instances for s≤n/(3k) . (4) We show that the problem is PSPACE-complete when k∈O(nε) and s∈O(n1−ε) , for any constant 0<ε≤1 , even for restricted settings such as when G is an edge-maximal planar graph or when k≥3 and G is planar. 
    more » « less
  3. null (Ed.)
    Given a locally flat-foldable origami crease pattern $G=(V,E)$ (a straight-line drawing of a planar graph on the plane) with a mountain-valley (MV) assignment $\mu:E\to\{-1,1\}$ indicating which creases in $E$ bend convexly (mountain) or concavely (valley), we may \emph{flip} a face $F$ of $G$ to create a new MV assignment $\mu_F$ which equals $\mu$ except for all creases $e$ bordering $F$, where we have $\mu_F(e)=-\mu(e)$. In this paper we explore the configuration space of face flips that preserve local flat-foldability of the MV assignment for a variety of crease patterns $G$ that are tilings of the plane. We prove examples where $\mu_F$ results in a MV assignment that is either never, sometimes, or always locally flat-foldable, for various choices of $F$. We also consider the problem of finding, given two locally flat-foldable MV assignments $\mu_1$ and $\mu_2$ of a given crease pattern $G$, a minimal sequence of face flips to turn $\mu_1$ into $\mu_2$. We find polynomial-time algorithms for this in the cases where $G$ is either a square grid or the Miura-ori, and show that this problem is NP-complete in the case where $G$ is the triangle lattice. 
    more » « less
  4. null (Ed.)
    In this paper, we show that the rigid-foldability of a given crease pattern using all creases is weakly NP-hard by a reduction from the partition problem, and that rigid-foldability with optional creases is NP-hard by a reduction from the 1-in-3 SAT problem. Unlike flat-foldabilty of origami or flexibility of other kinematic linkages, whose complexity originates in the complexity of the layer ordering and possible self-intersection of the material, rigid foldabilltiy from a planar state is hard even though there is no potential self-intersection. In fact, the complexity comes from the combinatorial behavior of the different possible rigid folding configurations at each vertex. The results underpin the fact that it is harder to fold from an unfolded sheet of paper than to unfold a folded state back to a plane, frequently encountered problem when realizing folding-based systems such as self-folding matters and reconfigurable robots. 
    more » « less